A

+= Ames Laboratory

Creating Materials & Energy Solutions

Rl \/|otivation: Heterogeneous systems (HSs) composed of Chip Multicore Processors (CMPs) and Graphics Processing Units
(GPUs) have proven they can achieve interesting speedups on scientific applications. Like any computer engine of today,
GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for HSs with
GPUs, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of
threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for heterogeneous
systems is needed.

Fault Tolerance for Heterogeneous Systems

Goal:To design, implement, and analyze a complete framework for application-level checkpointing on heterogeneous systems.

Challenges: The proposed framework should: Multi-Threaded Application
« Support applications running on all CMPs and GPUs present on the HS
« Not require global synchronization — too costly to synchronize thousands of in-flight

threads
- Be flexible to support computational devices discovery and workload distribution at . .
. CMP, GPU GPU,

n, threads threads n. threads n, threads

runtime
- Support different programming models: SIMT for GPUs and MIMD for CMPs T e e —
* |mpOse IOW CheCprint Overhead Heterogeneous System

* Avoid bus bottlenecks at the buses - slow device to host data transfer

The Proposed Framework: Application-Level Checkpointing for Heterogeneous Systems

* Application ready to run on a HS l
* No checkpointing support Application

* How to partition an application efficiently to * Functions supporting checkpointing

achieve different levels of synchronization * Interface between the application and OpenCL
* Computation-Communication overlapping to * Multi-threaded checkpointing

achieve low checkpoint overhead *Daemon for handling multi-threaded

* How to handle dynamic workload distribution checkpointing

Application
supporting
synchronization

Preliminary Results: Application partition, Computation-Communication overlapping and Checkpoint Overhead was analyzed on
two CUDA applications: Dense Matrix Multiplication and a Grid-Type application.

Dense Matrix Multiplication

PEEEEE
EEEEEE
EEEEEE
e[e
e e
e el

(@) A mxm matrix (m=6) (b) Division into nxn submatices (c) Performance Overhead achieved by the Checkpointed version compared (a) Grid representation of (b) Division into smaller grids. Each (c) Performance Overhead achieved by dividing the
(n=3) to the Non-Checkpointed version of the Dense Matrix Multiplication an application smaller grid is a checkpoint subprocess checkpoint process into smaller subprocesses

Grid-Type Application

Mumber of Checkmint Subprocesses (n)

Bl 0220435 @16 O32

ed Execution Tirme

el ExecutionTirme

Farrrali

1.5
L IIII

o 11 12 13 2%
r.1||1lr-r Hlu-' H oint Subprocesses (M)

Farrreli

-ﬂ]-ﬂ]l:l]]-m

m=1024 m=2048 -

Matriz Size ()

Conclusions:
« Overlapping GPU computation with checkpointing achieves low checkpoint overhead

- Partitioning the application achieves good performance until a point where there is not
enough computation to keep the hardware busy, and therefore the execution time
starts to increase

Contact Information:
Lizandro Solano-Quinde, Brett Bode
{ Isolano, brett }@scl.ameslab.gov

